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Agris Bērziņš
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Abstract A new methodology for the simulation of solid state phase transition
kinetics has been developed by combining the influence of nucleation rate, nuclei
growth rate and the power p characterizing the contact area between the growing par-
ticles. The equations used in this methodology were well known, and have been used
previously for creating some of the most popular solid-state kinetic equations. The
developed methodology made possible calculations of separate rate constants for two
processes affecting the rate of phase transition—nucleation (described with K1) and
nuclei growth (described with K2). Similar phase transitions were also approximated
with the well-known single constant Avrami–Erofeev equation, but we successfully
calculated both constants according to the new methodology, which allowed a sepa-
rate evaluation of these two processes and explained the different induction periods.
The effects of empirically adjusted constants on theoretically calculated kinetic curves
were thus determined.

Keywords Nucleation · Nuclei growth · Phase transition · Kinetic model ·
Induction period

1 Introduction

The study of solid state phase transition kinetics may be complicated by various
factors that can affect and limit the rates of these processes. These factors also depend
on the type of solid state reaction. The most common types are decomposition pro-
cesses, reactions between solid components and phase transformations [1,2]. Various
models for solid state reactions have been put forward and analysed on the basis of
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transformation. These mechanisms are defined by rate limiting steps, such as nucle-
ation, nuclei growth, phase interface movement or diffusion [1–4].

2 Theoretical background

Nucleation is typically described by the Eq. (1):

d N

dt
= kN (No − N ) (1)

Where N is the number of nuclei at time t, kN is the nucleation rate constant, and
No is the number of potential nucleation sites (since a phase α to phase β conversion
can only start at crystal imperfections, known as nucleation sites) [1,5]. However, this
equation is valid for isolated analysis of nucleation alone, when nuclei growth is not
involved.

The Eq. (1) describes a single step nucleation. The concept of multistep nucleation
is also known, assuming that for the generation of new nuclei several distinct steps
may be necessary. In those cases nucleation is described by the Eq. (2), where β is the
number of successive events necessary for growth of nuclei, and ki is a rate constant
[1,6].

d N

dt
= No · kβ

i

β! βtβ−1 (2)

The second rate determining factor is the growth of nuclei. The volume of nuclei at
the time v(t) can be described with the Eq. (3):

v(t) = σ [r(t, to)]
λ (3)

where σ is a shape factor, r is the radius of nuclei at time t , and λ is the number
of growth dimensions. The total volume occupied by all nuclei can be assessed by
combining both nucleation and nuclei growth rate in the Eq. (4):

V (t) =
t∫

o

v(t)

(
d N

dt

)
t=to

dt (4)

If nucleation rate follows the Eq. (2), and nuclei growth rate is constant, then this is
a power law (P) type of a model. In the case when some of the possible nucleation
sites are eliminated by the growth of existing nuclei, nucleation would not follow Eqs.
(1) or (2) [7]. In such a case the reaction rate follows the Avrami–Erofeev or JMAEK
model [7,8].

Reactions in solid state also can be described by geometric contraction models,
which assume that nucleation happens rapidly on the crystal surface, and depending
on the shape of the particle, one of the phase boundary controlled reaction models (R)
applies [3,4].

If diffusion is the rate limiting step, then the reaction rate decreases proportion-
ally with the thickness of the product layer, through which diffusion must happen.
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Fig. 1 Generalized α—t plot showing the characteristic experimental curve, where τ indicates the time
when an individual nuclei form, t is the point where the calculation is done, and �τ denotes nuclei growth
over the time τ

Depending on the mechanism of diffusion, various diffusion models have been devel-
oped [1,4].

Experimental data points can also be described by order-based rate laws (F), which
were originally developed for homogeneous reactions in gas or liquid phase, but were
later adopted also for solid state reactions [9,10]. The aforementioned mathematical
models are listed in the literature [1,7,11].

Generally, the kinetic curve in the coordinate system of α versus time can be
described according to the Fig. 1, where I is the initial reaction phase, sometimes
associated with the reaction of impurities or unstable superficial material, II is the
induction period, III is the acceleration range, IV is the deceleration range and V
denotes the reaction completion [1]. Each mathematical model has a different appli-
cability of specific regions of the curve, thus for each model there is a typical curve
shape, as represented in the literature [11]. While the definition of rate acceleration or
deceleration region depends mostly on the selected model, the most variable part of
experiments is the induction period. This period can be influenced by:

a) thermal inertia;
b) some other changes in sample delaying the onset of the reaction;
c) a slow start of the main reaction.

The last interpretation matches the true induction period ti [1]. Although the induction
time is not typically included in mathematical models, it is possible to incorporate a
mathematically reasoned induction period in a reaction model.

3 A mathematical expression of the theoretical model

As said before, the nucleation rate can be described with Eq. (1). The nucleation rate
decreases with time, because the number of remaining potential nucleation sites at
time (No − N ) also decreases. If we look at the phase transition expressed as:
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α(s) → β(s)

then the value of No − N is proportional to Wα (residual mass fraction of phase α)
if nucleation sites are equally distributed in the whole volume, so the Eq. (1) can be
written also as Eq. (5), where k1 is the nucleation rate constant:

d N

dt
= k1Wα(τ ) (5)

By assuming that nuclei growth rate would be isotropic and proportional to the phase
boundary area, at low conversion degree values this phase boundary area is equal
to the total surface of all growing particles. However, there is a possibility that two
growing nuclei can come into contact, blocking further growth at this contact area.
Such a contact area, which must increase with conversion degree, is determined by
the residual phase α mass fraction. The total effect of these processes can be described
by the Eq. (6), which includes dependence of nuclei growth rate on the surface area
of growing phase β and the residual mass fraction of phase α to the power p, which
describes the influence of contact area between the β phase crystals.

dm

dt
= k′

2Sβ W p
α (τ ) (6)

The surface area of a growing spherical particle can be expressed from its density and
mass:

dm

dt
= k2(mi (τ ))2/3W p

α (τ ) (7)

By integration of this equation, the following expressions can be obtained:

dm

(mi (τ ))2/3 = k2W p
α (τ )dt (8)

3dm1/3 = k2W p
α (τ )dt (9)

m1/3 = k2

3

t∫

τ

W p
α (τ )dt + const (10)

In the Eq. (10), the mass of a single nucleus (formed at the time τ ) is obtained at time
t (see the Fig. 1). As noted previously, the growth starts only when nuclei with mass
mo are formed, thus we can calculate an integration constant, because when t = τ ,
then m = mo, so the constant equals to m1/3

o :

m(t−τ) = mo

⎛
⎝1 + k2

3m1/3
o

t∫

τ

W p
α (τ )dt

⎞
⎠

3

(11)

If the constant k2 is combined with m1/3
o , then a constant K2 is obtained:
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m(t−τ) = mo

⎛
⎝1 + K2

3

t∫

τ

W p
α (τ )dt

⎞
⎠

3

(12)

In order to calculate the mass increase of all nuclei formed at the time dτ , the Eq.
(12) describing the growth of these nuclei should be multiplied by the Eq. (5), which
describes the amount of nuclei formed at a given time:

d M(τ ) = k1mo

⎛
⎝1 + K2

3

t∫

τ

W p
α (τ )dt

⎞
⎠

3

Wα(τ )dτ (13)

The mass increase of all particles formed between t = 0 to t , expressed in the Eq.
(13), should be integrated. A new constant K1 = k1 · mo is thus created.

1 − Wα = α =
t∫

0

d M(τ ) = K1

t∫

0

⎛
⎝1 + K2

3

t∫

τ

W p
α (τ )dt

⎞
⎠

3

Wα(τ )dτ (14)

By solving this integral equation, the dependence of α on time can be obtained. The
method for solving the Eq. (14) is presented further.

4 Calculation methods

The Eq. (14) was solved according to the Runge–Kutta method of numerical integra-
tion [12], and for this purpose the Eq. (15) describing nucleation and the Eq. (17)
describing nuclei growth were introduced. The starting conditions were Wα(t=0) = 1,
and each formed nucleus was assumed to have a mass of mo. In these equations �N
was replaced with �M/mo, because �M = �N · mo, obtaining:

�M = K1 · Wα(τ )�t (15)

where �M is the total mass of nuclei formed over �t , and τ is the moment of forma-
tion.

A non-dimensional mass multiplication parameter Z was inserted into the Eq. (7),
where Z = m/mo, resulting in the Eq. (16):

�Z = K2 Z2/3
τ−�t W

p
α (τ )�t (16)

The growing particle mass multiplication parameter Z over �t , relative to the initial
nuclei mass can be calculated at time t , according to the Eq. (17):

Zt−τ = Zτ−�t + �Z (17)
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Table 1 Tables used for calculations representing nucleation and nuclei growth

i j

1 2 3 . . . z

A

1 �M1 0 0 0 0

2 �M1 �M2 0 0 0

3 �M1 �M2 �M3 0 0

. . . �M1 �M2 �M3 . . . 0

z �M1 �M2 �M3 . . . �Mn

B

1 Z11 0 0 0 0

2 Z12 Z22 0 0 0

3 Z13 Z23 Z33 0 0

. . . Z1... Z2... Z3... . . . 0

z Z1z Z2z Z3z . . . Zzz

This process can be simulated by using two Table 1A and B, of which the former
represents the amount of formed nuclei, calculated according to the Eq. (15), and the
latter represents a mass multiplication factor of growing nuclei calculated according
to the Eq. (17). Each table consists of rows i (numbered from 1 to z) and columns
j (numbered from 1 to z), both representing time. Changing column or row by one
means changing time by �t . The values in the table cells were calculated in such a
way that changing j means changing τ , and changing i means changing t. If we look at
the example shown in the Table 1, then the amount of nuclei formed (in the Table 1A)
in time τ (corresponding to the first column j) did not depend on changes in the time
t (corresponding to any of the rows i), if i > j . However, by changing the time t
(corresponding to any of the rows i), the mass multiplication factor Z in the Table 1B
was increased.

Each cell of the Table 1A was filled according to the following rules:

1) �M(i, j) = 0, if j > i
2) �M(i, j) = Eq. (15), if j = i
3) �M(i, j) = �M(i−1, j), if j < i

Each cell of the Table 1B was filled according to the following rules:

1) Z(i, j) = 0, if j > i
2) Z(i, j) = 1, if j = i
3) Z(i, j) = Eq. (17), if j < i

The conversion degree was obtained from the Eq. (18), by calculating the sum of
products of �M(i, j) and Z(i, j) for each given time, according to the row i :

1 − Wα,t = Mα,t =
z∑

j=1

(
�M(i, j) · Z(i, j)

)
(18)
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In that way, the corresponding conversion degree for the given constants K1, K2 and
p was found for the time t .

After describing the experimental process with such a mathematical procedure,
a least squares method in Excel Solver was used for optimizing the equation con-
stants K1, K2 and p, in order to minimize the divergence between experimental and
theoretical conversion degree values at given times.

5 Discussion

The developed methodology produced a kinetic curve with a sigmoid shape, as shown
in the Fig. 2. From the kinetic curve shown in the Fig. 2 it was concluded that a phase
transition with an induction period can be described analytically. Similar curves could
also be obtained with the Avrami–Erofeev equation [7,8].

The major differences between the well-known Avrami–Erofeev equation and our
provided method can be outlined as:

1. The number of nuclei appearing in a volume V was obtained in the Avrami equa-
tion [13] by:

N = V
.

N dτ, (19)

where
.

N is the rate constant of nucleation. The reduction of nucleation sites due
to growth of nuclei was not included in this equation, and this shortcoming was
circumvented by further analysing an extended volume—the volume of the new
phase that would form if the entire sample was not yet transformed. However, in
the provided equation we used the real volume from the very beginning, and the
nucleation rate was described with the Eq. (5), including a decrease of nucleation
rate with an increasing mass fraction of the product.

Fig. 2 An example of a calculated kinetic curve
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2. With both approaches an increase of volume was obtained by multiplying equa-
tions describing nucleation and nuclei growth. In Avrami equation a constant
growth rate of particle volume was used, and the extended volume was again
obtained due to ignoring any contact areas of growing particles. In our Eq. (6) we
used a more realistic mass increase rate, which was proportional to the growing
phase surface area, and the mass fraction of initial phase raised to the power p. By
using this function, we introduced a rate adjustment due to the predicted contact
between growing particles.

3. The starting mass of nuclei mo was obtained from integrating the Eq. (7), describ-
ing the growth of nuclei. Although the size of nuclei and their Gibbs energy
diagrams have been characterized in the literature [14], the concept of critical
mass has not been introduced neither in Avrami equation, nor in other published
equations.

4. A simple equation describing an extended volume with two constants was obtained
by a combination of nuclei growth rate and the nucleation rate. For obtaining the
real volume, it was multiplied with a volume fraction [13]. Our equation included
a correction already from the beginning, and it was different for each nucleation
and nuclei growth process.

5. Finally, the Avrami equation was obtained as integral equation, and the nucleation
and nuclei growth constants were combined into one constant K . This form of
Avrami equation made it impossible to obtain separate growth and nucleation rate
constants. However, a second constant n was introduced, characterizing dimen-
sions. Our equation was obtained in differential form, and the product of both
constants could not be obtained. Solving of such a differential equation was pos-
sible only through numerical integration, which gave both nucleation and nuclei
growth constants combined together with the constant p.

In Fig. 3 we show the parameter change effect on simulated theoretical plots
with general kinetic parameters K1 = 0.00013 g h−1, K2 = 0.13 h−1 and p =
1. In each case the rest of the parameters were not changed. It can be seen
that both constants K1 and K2 influenced the shape of the curve. The constant
K2 mainly determined the curvature of the line, while the constant K1 mainly
affected the induction period. The constant p had a slight effect on the curve
at the end of the phase transition, when growing nuclei were starting to aggre-
gate, and therefore the growth rates were slower than would be in an ideal
case.

When such a numerical integration was performed, the results depended on the
calculation time interval. The Fig. 4a shows the differences in calculated conver-
sion degree values, compared with those calculated with �t = 0.05 h, but the Fig. 4b
presents a comparison with those calculated with �t = 0.3 h. The largest calculated
conversion degree difference created by �t increase from 0.05 to 0.3 h was smaller
than 0.004, but when comparing the effect of �t = 0.05 h versus �t = 0.45 h, then the
largest difference was approximately 0.006. These errors were negligible in the con-
text of the typical X-ray powder diffraction analysis accuracy, used for phase content
determination in real phase transitions.
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Fig. 3 Effects of a K1, b K2 and c p on the plot of differential equation (14)

Fig. 4 Differences in calculated conversion degree values for various �t , comparing a �t = 0.05 h and b
�t = 0.3 h

6 Conclusions

With this developed methodology it was possible to successfully simulate and analyse
phase transitions, where both nucleation and nuclei growth represented rate limit-
ing steps, and a certain induction period was observed. Such phase transitions were
described with an equation involving three constants—rate constants of nucleation
(K1) and crystal growth (K2), and a constant p characterizing the contact area between
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the growing particles. For experimental phase transitions these constants would be
determined from kinetic data with Excel Solver. It was concluded that the value of
nucleation rate constant (K1) affected mostly the early part of the curve, while the
crystal growth rate constant (K2) defined the curvature of the kinetic plot.
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